> 数学 >
已知关于x的一元二次方程x平方-(3k+1)x+2k平方+2k=0
1.求证,无论k为何值,方程总有实数根
2.若等腰三角形ABC的一边长a=6,另两边b,c恰好是这个方程的两个实数根,求三角形ABC的三边长.
人气:347 ℃ 时间:2019-08-22 10:29:54
解答
1、Δ=(3k+1)²-4(2k²+2k)
=9k²+6k+1-8k²-8k
=k²-2k+1
=(k-1)²≥0;
所以无论k为何值,方程总有实数根
2、b+c=3k+1;
bc=2k²+2k;
b=c时;b=c=(3K+1)/2;
(3k+1)²/4=2k²+2k;
9k²+1+6k=8k²+8k;
k²-2k+1=0;
k=1;
b=c=2;
2+2=4<6不符合;
b=6或c=6;
c=3k-5;
(3k-5)6=2k²+2k;
18k-30=2k²+2k;
2k²-16k+30=0;
k²-8k+15=0;
(k-3)(k-5)=0;
k=3或k=5;
k=3;c=4;a+b+c=6+6+4=16;
k=5;c=10;a+b+c=6+6+10=22;
很高兴为您解答,skyhunter002为您答疑解惑
如果本题有什么不明白可以追问,第一小题为何有个△=韦达定理;Δ=b²-4ac;用来判别是否存在实数根的
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版