已知二次函数y=f(x)的图像经过原点,f(x+1)是偶函数,f(x)+1=0有两个相等的实数根
1.求二次函数y=f(x)的解析式
2.若对任意x属于[2^-1,8],2f(log2x)+m>=0恒成立,求实数m的取值范围
3.令y=f(logax)(a>0,且a不等于1)求该函数在[1,4]的最大值
不要复制百度上的,
人气:281 ℃ 时间:2019-10-19 07:44:57
解答
1、
设 y=f(x)=ax²+bx+c
过原点(0,0) 则 0=a*0+b*0+c,即 c=0
f(x+1)=a(x+1)²+b(x+1)=ax²+(2a+b)x+a+b 是偶函数,则:
ax²+(2a+b)x+a+b=a(-x)²+(2a+b)(-x)+a+b
即 2(2a+b)x=0 恒成立,则 2a+b=0 b=-2a
f(x)+1=ax²-2ax+1=0 有两个相等的实数根,则:
(-2a)²-4a=0 即 a=1
所以 y=f(x)=x²-2x
2、
2f(log2x)+m=2((log2x)²-2log2x)+m
=2((log2x-1)²-1)+m
=2(log2x-1)²-2+m
x∈[2^-1,8] 时,(log2x-1)²≥0 x=2时,取得最小值0,此时也要求:
2(log2x-1)²-2+m >=0 则 -2+m >=0,m>=2
即 m∈ [2,+∞)
3、
y=f(logax)=(logax)²-2logax=(logax-1)²-1
当0
推荐
- 已知二次函数f(x)=ax2+bx+c的图像经过坐标原点,满足f(1+x)=f(1-x)且方程f(x)=x有两个相等的实数根
- 已知二次函数y=f(x)的图像经过原点,且f(x-1)=f(x)+x-1,求f(x)的表达式
- 已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数y=f(x−1/2)是偶函数. (1)求f(x)的解析式; (2)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完
- 若二次函数y=f(x)的图像过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围
- 若二次函数y=f(x)的图像过原点,且1
- 翻译下 Tracy want to give birth to a mixed blood child
- 甲乙两人出同样的多钱去买笔记本,结果甲拿了10本,乙拿了6本,所以甲又给了乙2元钱,问每本笔记本是几元
- 买3千克梨用4元5角钱,1千克苹果的价钱比1千克的价钱便宜3角钱,买3千克苹果要用多少钱?(用两种方法解答)
猜你喜欢