已知x,y,z为非负实数,且满足x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.
人气:123 ℃ 时间:2019-08-21 12:20:39
解答
将已知的两个等式联立成方程组x+y+z=30①3x+y−z=50②,所以①+②得,4x+2y=80,y=40-2x.将y=40-2x代入①可解得,z=x-10.因为y,z均为非负实数,所以40−2x≥0x−10≥0,解得10≤x≤20.于是,u=5x+4y+2z=5x+4(...
推荐
- 若x+y+z=30,3x+y-z=50,x,y,z均为非负数,且m=5x+4y+2z,试求m的最大值与最小值.
- 若x+y+z=30,3x+y-z=50,x,y,z都为非负实数,则M=5x+4y+2z的取值范围是_.
- 若x+y+z=30,3x+y-z=50,x、y、z皆为非负数,求M=5x+4y+2z的取值范围.
- 已知x+y+z=30,3x+y-z+50,x.y.z皆为非负数,求m=5x+4y+2z的取值范围.
- 若x+y+z=30,3x+y-z=50,x,y,z都为非负实数,则M=5x+4y+2z的取值范围是_.
- promise me you`ll never give up..
- 某有机物只含C,H,O三中元素,相对分子质量为46,2.3g该物质完全燃烧后生成0.1mol
- 如何提问解方程
猜你喜欢