(1)
f(x)=2cos²x+2√3sinxcosx-1
=1+cos2x+√3sin2x-1
=cos2x+√3sin2x
=2(1/2cos2x+√3/2sin2x)
=2(sinπ/6cos2x+cosπ/6sin2x)
=2sin(π/6+2x)
周期T=2π/ω=2π/2=π
x∈[Kπ-π/3,Kπ+π/6],单调递增
(2)f(x)的图像可由y=sinx的图像,x缩小一倍,y增大一倍,再向左平移π/6得到f(x)=sinx的单调递增区间是[2Kπ-π/2,2Kπ+π/2]f(x)=sin2x的单调递增区间是[Kπ-π/4,Kπ+π/4]f(x)=sin(π/6+2x)的单调递增区间是[Kπ-π/3,Kπ+π/6] 其实就是凑π/6+2x=-π/2,和π/6+2x=π/2,可以分别解得x=-π/3,x=π/6,再加上周期对于f(x)=sinx的单增区间你要记[2Kπ-π/2,2Kπ+π/2],单减区间是[2Kπ+π/2,2Kπ+3π/2] 其它的变型就是凑-π/2,π/2,3π/2,解一下,再加上周期就可以了熟练的可以直接写的,不要过程