>
数学
>
已知f(x)=e^x-ax-1.求f(x)的单调区间
人气:180 ℃ 时间:2020-02-05 10:51:52
解答
f(x)=e^x-ax-1
f'(x)=e^x-a
当a≤0时,f'(x)>0,则f(x)在(-∞,+∞)内为增函数
当a>0时,f'(x)=e^x-a>0,x>lna时为增函数
f'(x)=e^x-a≤0,x≤lna时为减函数
答:当a≤0时,f(x)在(-∞,+∞)内为增函数
当a>0时 ,f(x)在(lna,+∞)内为增函数
f(x)在(-∞,lna]内为减函数
推荐
已知函数f(x)=e^x-ax-1,求f(x)的单调递增区间
已知函数f(x)=x^3+ax^2+x+1,讨论函数f(x)的单调区间
f(x)=e^(ax)[(a/x)+a+1],其中a≥-1,求f(x)单调区间
f(x)=e^x-1-x-ax^2 若a=0 求f(x)单调区间
已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e-x,φ(x)=f(x)•g(x). (1)当a=1时,求φ(x)的单调区间; (2)求g(x)在点(0,1)处的切线与直线x=1及曲线g(x)所围成的封闭图形的面
一篇400字美文+赏析
写一段表示老师高兴的句子
mr green said he ( )in the school for about twenty years
猜你喜欢
一道数学题[有关一元一次方程的]
称.应.不.众.无.心.口.守.二.一.如.瓶.词.始.终.意能组成哪些四字成语
i'll certainly tell the emperor,how pleased i am with it
two kinds of fishes
俗话说"知识犹如人体的血液一样宝贵!"你是怎样理解这句话的?
已知x=b/a,a,b为互质的正整数,且a≤8,(根号2)-1
把下列成语用另一个成语解释
If you fail ,let it be ,just try until you make
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版