已知两圆C1:(x+3)^2+y^2=4,C2:(x-3)^2+y^2=100,动圆P与圆C1外切,与圆C2内切,求动圆圆心P轨迹方程.
人气:153 ℃ 时间:2019-11-05 22:04:09
解答
外切半径满足:R+r=d (d为圆心距)
内切半径满足:R-r=d (R为大圆半径,r为小圆半径)
|PC1|=R1+2
|PC2|=10-R1
∴|PC1|+|PC2|=12 为定值
根据椭圆定义:椭圆是平面上到两定点的距离之和为常值的点之轨迹
∴P点的轨迹为以C1、C2为焦点,2a=12为长轴的椭圆,设为x²/a² + y²/b² =1 ,a>b>0
2a=12,c=3
∴b²=a²-c²=27
∴P点的轨迹为x²/36 + y²/27=1
推荐
- 2.已知圆C1:(x+3)*2+y*2=1和圆C2:(x-3)*2+y*2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程
- 已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是( ) A.x=0 B.x22-y214=1(x≥2) C.x22-y214=1 D.x22-y214=1或x=0
- 已知圆C1:(x+3)^2+y^2=16,圆C2:(x-3)^2+y^2=1动圆P与两圆相外切,求动圆圆心P的轨迹方程
- 已知动圆P与定圆C1:(x+4)^2+y^2=25,C2:(x-4)^2+y^2=1都外切,求动圆圆心P的轨迹方程
- 已知两圆C1:(x+2)^2+y^2=9,C2:(x-2)^2+y^2=25,动圆P与圆C1外切,与圆C2内切,求动圆圆心P轨迹方程.
- 地球上的生命起源的学说
- 用0,1,2.9共十位数字组成无重复数字的四位数 1.其中能被5整除多少 2.偶数多少
- 收入和支出,零上和零下,这些量都是具有什么意义的量
猜你喜欢