已知A,B,C,为三角形ABC三内角,其对边分别为a,b,c 若cosBcosC-sinBsinC=1/2,若a=2
人气:457 ℃ 时间:2019-10-20 00:14:35
解答
(1)求角A
cosBcosC-sinBsinC=1/2,所以,根号2倍cos(B+C)=根号2倍cosA=1/2
所以A=135度
(2)若a=2根号3,b+c=4,求三角形ABC的面积
由余弦定理可得:cosA=(b^2+c^2-a^2)/2bc,所以bc=4+2倍根号2,三角形面积S=1/2bc*sinA=2+根号2/2
推荐
- 已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若m=(cosA/2,−sinA/2),n=(cosA/2,sinA/2),且m•n=1/2 (1)求角A的值; (2)若a=23,b+c=4,求△ABC的面积.
- 已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若m=(cosA/2,−sinA/2),n=(cosA/2,sinA/2),且m•n=1/2 (1)求角A的值; (2)若a=23,b+c=4,求△ABC的面积.
- 已知A、B、C为△ABC的三个内角,它们的对边分别为a、b、c,且cosBcosC-sinBsinC=1/2,(1)求A
- 三角形ABC的三个内角A,B,C所对的边分别为a,b,c,向量m=(-1.1),向量n=(cosBcosC,sinBsinC-二分之根号三)
- 三角形ABC内cosBcosC-sinBsinC=1/2 a=2√3, b+c=4 求ABC面积
- what do plants need to get water?
- ( )You go______Long Street and______left.You can find the supermarket.
- 说明文的描写和记叙文的描写有什么不同?
猜你喜欢