一次函数y=2x+3,与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9.(1)求?
一次函数y=2x+3,与二次函数y=ax2+bx+c的图象交于A(m,5)和B(3,n)两点,且当x=3时,抛物线取得最值为9.
(1)求二次函数的表达式;
(2)x为何值时,一次函数与二次函数的值都随X的增大而增大
(3)当X=?,一次函数值大于二次函数值
人气:268 ℃ 时间:2019-11-01 06:56:48
解答
(1)将A(m,5)和B(3,n)代入y=2x+3中,得:
2m+3=5 所以,m=1
6+3=n 所以,n=9 即 A(1,5) B(3,9)
将A,B两点代入y=ax2+bx+c中,有:a+b+c=5
9a+3b+c=9,解得,4a+b=2
又因,( -2a )分之b=3 得 a=-1 b=6 c=0 所以,y=-x2 +bx
(2) 因为(3,9)为二次函数的顶点,
所以,x3时.
推荐
- 一次函数y=2x+3,与二次函数y=ax²+bx+c的图像交点A(m,5)和B(3,n)两点,且当x=3时,抛物线取的最为9
- 如图,二次函数y=x²+bx+c的图像与x轴交于A,B两点,且A点坐标(-3,0),经过B点的直线交抛物线与点D
- 一次函数y=x-2与二次函数y=ax²+bx+c的图像交与A(2,m)和B(n,3)两点,且抛物线的对称轴是x=3.
- 已知二次函数y=ax2+bx+c的图象抛物线C经过(-5,0)
- 二次函数y=-2x2的图象经两次平移后得到抛物线y=-2x2+bx+c,且经过(1,2),(-1,0)两点,试说出平移的过程.
- 数学题☞2a²-3ab+4b²-5ab-6b²☞3a²-5a+2-6a²-3,其中a=-1
- 英语翻译
- 将一个长8分米,宽6分米,高4分米的长方体木料,截成两个长方体,则表面积增加了多少平方分米?
猜你喜欢