实系数方程x*x+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求b/a的最小值?
x^2+ax+2b
人气:410 ℃ 时间:2020-04-22 10:30:25
解答
设f(x)=x²+ax+2b
因为一个根在(0,1)内,另一个根在(1,2)内
所以f(0)=2b>0
f(1)=1+a+2b<0
f(2)=4+2a+2b>0
得b>0
1+a+2b<0
2+a+b>0
在坐标轴a0b中画出可行域
b/a表示的几何意义是点(a,b)到点(0,0)的斜率的大小
由可行域知道,当(a,b)为1+a+2b=0和2+a+b=0的交点时,斜率最小
又交点为(-3,1)
所以b/a=(1-0)/(-3-0)=-1/3
答案:最小值为-1/3我算出来的a范围为(-3,-1)b的范围为(0,1)按你说的和这样不符啊不能算出a和b的范围的,要画出可行域。
推荐
- 实系数方程f(x)=x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)b−2a−1的值域; (2)(a-1)2+(b-2)2的值域; (3)a+b-3的值域.
- 实系数方程f(x)=x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)b−2a−1的值域; (2)(a-1)2+(b-2)2的值域; (3)a+b-3的值域.
- 实系数方程x*x+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求a+b-3的范围.
- 实系数方程X*X+aX+2b=0的一个根大于0且小于1,另一个根大于1小于2,则(b-2)/(a-1)的取值范围是多少
- 实系数方程f(x)=x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,求: (1)b−2a−1的值域; (2)(a-1)2+(b-2)2的值域; (3)a+b-3的值域.
- 1 、 在一个大正方形中截去一个小正方形后,剩余的面积为13,且两正方形的边长均为整数.求两正方形的边长.
- 1 2 4 3 5 是什么成语
- 一根绳子围着大树绕10圈剩3米,如果绕11圈又缺7米,那么绕8圈剩多少米?
猜你喜欢