试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.
人气:440 ℃ 时间:2019-09-29 00:54:47
解答
假设它的奇数位数字之和为x,则偶数位数字之和是13-x,被11整除则奇数位数字之和减去偶数位数字之和能被11整除,所以x-(13-x)能被11整除,
即:x+x-13=11,
x=12;
此时偶数(十位)为13-x=13-12=1,
即百位和个位的和=12,十位是1;
所以最小是319;
推荐
猜你喜欢
- 诗集的前言 几十字的
- 从0.12mol的NaCl、MgCl2、AlCl3三种溶液,体积均为500ml时Cl-的物质的量浓度为
- 若定义新的运算;‘a※.b=-2a/(a-b)三次方求4※6
- 【急!】高一化学填空题一道.
- 按照计数习惯,整数从( )为位起,每()数位是一级
- 已知集合M={直线},N={圆},则M交N中元素个数为_______
- 一桶水,第一次倒出一半,然后再倒回桶中8千克,第二次倒出桶中水的一半,第三次倒出36千克,桶中还剩下12千克水,原来桶中有水多少千克?
- 一袋大米,第一次吃了40%还多5千克,第二次吃的是第一次的80%,这时还剩下12千克.这袋大米原来有多少千克?