> 数学 >
已知{an}是等比数列,a1=2,a3=18;{bn}是等差数列,b1=2,b1+b2+b3+b4=a1+a2+a3>20.
(1)求数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn的公式;
(3)设Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8,其中n=1,2,…,试比较Pn与Qn的大小,并证明你的结论.
人气:414 ℃ 时间:2019-08-19 00:50:50
解答
(1)设{an}的公比为q,由a3=a1q2得q2=
a3
a1
=9,q=±3.
当q=-3时,a1+a2+a3=2-6+18=14<20,
这与a1+a2+a3>20矛盾,故舍去.
当q=3时,a1+a2+a3=2+6+18=26>20,故符合题意.
设数列{bn}的公差为d,由b1+b2+b3+b4=26得4b1+
4×3
2
d=26.
又b1=2,解得d=3,所以bn=3n-1.
(2)Sn=
n(b1+bn)
2
=
3
2
n2+
1
2
n.
(3)b1,b4,b7,b3n-2组成以3d为公差的等差数列,
所以Pn=nb1+
n(n−1)
2
•3d=
9
2
n2-
5
2
n;
b10,b12,b14,b2n+8组成以2d为公差的等差数列,b10=29,
所以Qn=nb10+
n(n−1)
2
•2d=3n2+26n.
Pn-Qn=(
9
2
n2-
5
2
n)-(3n2+26n)=
3
2
n(n-19).
所以,对于正整数n,当n≥20时,Pn>Qn
当n=19时,Pn=Qn
当n≤18时,Pn<Qn
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版