求证,当N是整数时,两个连续奇数的平方差(2N+1)的平方-(2N-1)的平方是这两个奇数的和的2倍
人气:369 ℃ 时间:2020-03-29 07:08:37
解答
(2n+1)²-(2n-1)²
=(2n+1+2n-1)(2n+1-2n+1)
=(4n)(2)
=8n
=2×4n
应为n是整数,所以其结果就是2的倍数
❤您的问题已经被解答~(>^ω^
推荐
猜你喜欢
- 学校美术作品展中,有50幅水彩画,60幅蜡笔画,蜡笔画比水彩画多百分之几?
- 已知集合M=(1,2,3,4,5,6,7,8,9,),集合P满足:P⊆M,且若a∈P,则10-a∈P,这样的集合P有几个
- 16的x次方 乘 4的4次方=2的14次方 求x
- 现在要赏金20 if we go by car,we must know the t( )r( )的括号应该填什么
- 一个长方体的长宽高分别是a.b.h,如果高增高3米,那么表面积比原来增加多少平方米?
- 英语翻译
- 敬畏生命文中描写白色纤维飘散情景的用意是什么?
- 真空可以传导热吗?