抛物线焦点弦问题
已知抛物线的中点为原点,P大于0,焦点为F,过焦点的直线交抛物线于A、B两点,A、B两点在抛物线准线上的射影为A1、B1,连接A1B,AB1,问这两条直线是否都经过原点.
人气:229 ℃ 时间:2020-02-02 17:27:17
解答
不妨设抛物线方程为y^2=2px,
直线AB过焦点(p/2,0),可设为:x=ky+p/2
联立可得y^2-2kpy-p^2=0,
设 A(y1^2/(2p),y1),B(y2^2/(2p),y2),则B1(-p/2,y2)
∴ kOA=2p/y1,kOB1=-2y2/p
根据韦达定理可知:y1y2=-p^2,
∴kOA=KOB1,故A、O、B1三点共线(O为原点).
同理可证:B、O、A1三点共线(O为原点).
所以这两条直线是否都经过原点.
推荐
猜你喜欢
- why,can,one,together,a,hope,you,find,your,own,happiness是什么意思
- 张华家八月份用水十二吨比七月份节约了五分之一张华家七月份用水多少吨
- 生命的美有哪一些?
- 初中地理亚洲的东部和南部的降水与什么风的强弱有直接关系
- 用像、在造一个比喻句
- 负7分之2x=8等于多少
- 热电偶的冷端补偿电路和测温电路是否相同,也就是说,实际是用两个热电偶在测温?
- 现象与本质之关系是什么?