∴方程ax2+bx+c=0和方程mx2+nx+p=0有相等的根.
方程ax2+bx+c=0可化为x2+
b |
a |
c |
a |
方程mx2+nx+p=0可化为x2+
n |
m |
p |
m |
把方程①-②可得:(
b |
a |
n |
m |
c |
a |
p |
m |
解方程得:
bm−an |
am |
cm−ap |
am |
(bm-an)x+(cm-ap)=0
x=
ap−cm |
bm−an |
把x=
ap−cm |
bm−an |
得:a(
ap−cm |
bm−an |
ap−cm |
bm−an |
a(ap-cm)2+b(ap-cm)(bm-an)+c(bm-an)2=0
a(ap-cm)2+(bm-an)(abp-bcm+bcm-can)=0
a(ap-cm)2+a(bm-an)(bp-cn)=0
∵a≠0,
∴两边同时除以a得到:(ap-cm)2+(bm-an)(bp-cn)=0
故(ap-cm)2=(bp-cn)(an-bm).