设圆x^2+y^2-4x+2y-11=0上的圆心为A,点P在圆上,则PA的中点M的轨迹方程是、
人气:490 ℃ 时间:2020-03-27 11:22:40
解答
x^2+y^2-4x+2y-11=0
即(x-2)²+(y+1)²=4²
PA重点M的轨迹为以A为圆心,1/2原来圆半径为半径的圆,方程为
(x-2)²+(y+1)²=2²=4
推荐
- 已知点A(15,0),点P是圆x^2+y^2=9上的动点,M为PA中点,当P点在圆上运动时,求动点M的轨迹方程.
- 点P是圆C:x^2+y^2-4x+2y-11=0上的任意一点,PC的中点时M,试求动点M的轨迹方程?
- 经过圆x^2+y^2-4x+2y-4=0内一点(1,-2)做弦AB,则AB中点的轨迹方程?
- 设A为圆(x-1)^2+y^2=1上动点,PA是圆的切线,且PA的绝对值=1,则P点的轨迹方程是什么?
- 过圆C:x^2+y^2-4x+2y-4=0内的点p(1,-2)作弦AB,则弦AB中点的轨迹方程是多少
- 化简:-7ab+(-8ac)-(-5ab)+10ac-12ab.
- 单摆规律
- 如图,在△ABC中,∠ACB=90°,AC=2.1CM,BC=2.8CM,CD⊥AB,垂足为D.求:
猜你喜欢