更换积分∫(0,1)dx∫(1,1+x)f(x,y)dy+∫(1,2)dx∫(x,2)f(x,y)dy的积分顺序
人气:280 ℃ 时间:2020-03-28 16:47:12
解答
积分区域:0《x《1,1《y《1+x;1《x《2,x《y《2
交换顺序得:1《y《2,y-1《x《y
∫(0,1)dx∫(1,1+x)f(x,y)dy+∫(1,2)dx∫(x,2)f(x,y)dy
=∫(1,2)dy∫(y-1,y)f(x,y)dx
推荐
- 改换积分次序:∫ e 1dx∫ lnx 0f(x,y)dy=_.
- 更换积分次序∫(0,2)dx∫(x,3x)f(x,y)dy
- 高数:改变积分次序I=∫(0-1)dy∫(0-y)f(x,y)dx
- 改变积分顺序 ∫[2 ,1]dx∫√[﹙2x-x^2﹚,2-x] f(x,y)dy
- 交换累次积分的次序∫[0,1]dx∫[0,1-x]f(x,y)dy
- 如图,在平面直角坐标系中,点P从原点出发,沿x轴向右以每秒2个单位长的速度运动t(t>0)秒,抛物线y=-x2+bx+c经过原点O和点P,顶点为M.矩形ABCD的一边CD在x轴上,点C与原点重合,CD=4,BC=
- bnp paribas fortis是什么意思
- 6X+4(11-X)等于52怎么解
猜你喜欢