已知数列{an}的前n项和sn=1/2n求证;s1+s2+s3+……+sn各自平方的和 < 7/16
即已知数列{an}的前n项和sn=1/2n求证;s1^2+s2^2+s3^2+…+sn^2各自平方的和< 7/16
人气:266 ℃ 时间:2020-07-10 09:54:23
解答
sn=1/2n那么sn^2=1/2n*2n<【1/(2n-2)-1/2n】/2n≥2
于是s1^2+s2^2+s3^2+…+sn^2<1/4+1/16+(1/4-1/6)/2+……+[1/(2n-2)-1/2n]/2=1/4+1/16+1/8-1/4n=7/16-1/4n<7/16
推荐
- 已知数列an中a1=1,前n项和为sn,且P(an,an+1)在直线x-y+1=0上,则1/S1+1/S2+1/S3...+1/Sn=?
- 在有限数列{an}中,Sn是{an}的前n项和,若把S1+S2+S3+…+Snn称为数列{an}的“优化和”,现有一个共2010项的数列{an}:a1,a2,a3,…,a2010,若其“优化和”为2011,则有2011项的数列1,a1,a2
- 设数列an的前n项和为Sn,Sn=(-1﹚^nan-1\2^n,n属于N*,则a3= ,S1+S2+S3+.S100=
- 已知数列{an}的前n项和为Sn,a1=−2/3,满足Sn+1/Sn+2=an(n≥2),计算S1,S2,S3,S4,并猜想Sn的表达式.
- 等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列
- The gap's being closed easily enables people to enjoy...
- 英语:so far this year we () a fall in house prices by between 3 and 5 percent
- I hate those people who like to take sth out of nothing.
猜你喜欢