> 其他 >
求不定积分:∫ cosx/(sinx+cosx) dx
人气:489 ℃ 时间:2019-10-19 23:20:02
解答
∫cosx/(sinx+cosx) dx
= (1/2)∫[(cosx+sinx)+(cosx-sinx)]/(sinx+cos)] dx
= (1/2)∫ dx + (1/2)∫(cosx-sinx)/(sinx+cosx) dx
= x/2 + (1/2)∫d(sinx+cosx)/(sinx+cosx)
= (1/2)(x+ln|sinx+cosx|) + C
参考:
A=∫cosx/(sinx+cosx)dx
B=∫sinx/(sinx+cosx)dx
A+B=∫(cosx+sinx)/(sinx+cosx)dx =∫dx =x+c (1)
A-B=∫(cosx-sinx)/(sinx+cosx)dx =∫(d(cosx+sinx)/(sinx+cosx)=ln(cosx+sinx)+c (2)
[(1)+(2)]/2得:
A=∫cosx/(sinx+cosx)dx =x/2+1/2*ln(cosx+sinx)+c
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版