an |
3 |
∴log2(an+1-
an |
3 |
1 |
3 |
19 |
36 |
1 |
3 |
5 |
6 |
于是有an+1-
an |
3 |
又∵数列{an+1-
1 |
2 |
1 |
3 |
∴an+1-
1 |
2 |
1 |
2 |
=(
19 |
36 |
1 |
2 |
5 |
6 |
于是有an+1-
1 |
2 |
由①-②可得
1 |
6 |
∴an=
3 |
2n |
2 |
3n |
5 |
6 |
19 |
36 |
a1 |
3 |
a2 |
3 |
an |
3 |
a1 |
2 |
a2 |
2 |
an |
2 |
1 |
3 |
an |
3 |
an |
3 |
1 |
3 |
19 |
36 |
1 |
3 |
5 |
6 |
an |
3 |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
2 |
19 |
36 |
1 |
2 |
5 |
6 |
1 |
2 |
1 |
6 |
3 |
2n |
2 |
3n |