有µmg=maA得aA=µg=2 m/s2
木板B作加速运动,有F+µmg=MaB,
代入数据解得:aB=14 m/s2
两者速度相同时,有V0-aAt=aBt,
代入数据解得:t=0.25s
A滑行距离:SA=V0t-
| 1 |
| 2 |
| 1 |
| 2 |
| 15 |
| 16 |
B滑行距离:SB=
| 1 |
| 2 |
| 1 |
| 2 |
| 7 |
| 16 |
物体A相对小车滑行的距离:△s=SA-SB=0.5m.
此距离是物体A在小车上相对小车滑行的最大距离;
(2)物体A不滑落的临界条件是A到达B的右端时,A、B具有共同的速度v1,则:
| ||||
| 2aA |
| ||
| 2aB |
又:
| v0−v1 |
| aA |
| v1 |
| aB |
再代入F+µmg=MaB得:F=m2aB-µmg=1N
若F<1N,则A滑到B的右端时,速度仍大于B的速度,于是将从B上滑落,所以F必须大于等于1N.
故拉力F大小应满足:F≥1N
答:(1)若F=5N,需经过0.25s物体A与小车运动速度相等,此时,物体A相对小车滑行的距离为0.5m,是物体A在小车上相对小车滑行的最大距离;
(2)拉力F大小应满足:F≥1N

