> 数学 >
设F(x)是f(x)的一个原函数,且f(x)arctan(x^2)=2x[1-F(x)]/(1+x^4),若F(x)有一条水平渐近线y=2,求f(x).
人气:201 ℃ 时间:2020-03-29 17:53:19
解答
F'(x)/(1-F(x))=1/arctanx^2*2x/(1/+x^4),两边积分得:-ln(1-F(x))=ln(arctanx^2)+lnC Carctanx^2(1-F(x))=1,F(x)=1-1/Carctanx^2,因y=2是水平渐近线,C=-2/pi,所以,F(x)=1+2/piarctanx^2 f(x)=F'(x)=(4/pi^2)2x/(1+x^...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版