已知数列{an}满足a1=1,a(n+1)=2an+1 用数学归纳法证明an=2^n-1
人气:364 ℃ 时间:2019-11-13 03:48:17
解答
1、显然,当n=1时,an=2^n-1成立
2、下面证明当n=k时成立时,n=k+1也成立
ak=2^k-1
所以ak+1=2*ak+1=2^(k+1)-1
故n=k+1时原式也成立
综上所述,an=2^n-1
推荐
- 已知数列{an}满足a1=1,a(n+1)=2an+1 用数学归纳法证明an=2^n-1
- 已知数列{an}满足a1=1/2,a1+a2+……+an=n^2an,用数学归纳法证明an=1/{n(n+1)}
- 已知数列{an}满足:a1=1,a(n+1)=2an+1(n∈N*),用数学归纳法证明:an=2^n-1
- 已知数列{an}满足a1=1/2,a1+a2+.+an=n^2an,用数学归纳法证明:an=1/n(n+1)
- 已知数列{an}满足a1=1/2,a1+a2+……+an=n^2an(n∈N*),试用数学归纳法证明:an=1/[n(n+1)]
- R2=(7-R)2+52怎么算
- 点A在半径为3的圆O内,OA=根号3,P为圆O上一点,当角OPA取最大值时,求PA的长
- 如果3的m 次方+n 可以被10整除,证明3的m+4次方+也可以被10整除
猜你喜欢