> 数学 >
两个正项数列{an}{bn},an,bn^2,a(n+1)是等差数列,bn^2,a(n+1),b(n+1)^2是等比数列,证明:
(1){bn}是等差数列
(2)若a1=2,a2=6,设cn=(an-n^2)q^bn(q>0,为常数),求{cn}前n项和Sn
人气:339 ℃ 时间:2020-05-12 02:06:32
解答
1.a(n+1)^2=(bn^2)b(n+1)^2a(n+1)=bnb(n+1)2bn^2=an+a(n+1)=bnb(n-1)+bnb(n+1)2bn=b(n-1)+b(n+1)所以bn是等差数列;2.2bn^2=an+a(n+1)2b1^2=a1+a2=8b1=2a2=b1b2b2=6/2=3d=b2-b1=1所以bn=2+(n-1)=n+1an=bnb(n-1)=n(n+...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版