由b>a>0,可以得出三个结论:
1)b≠0.若b=0,则0=b>a>0,矛盾.
2)a^2(x-b)^2≠0.否则a=0或x=b,a=0与a>0矛盾,而x=b代入式中,得b^2=a^2,与b>a矛盾.
3)b+a>0,b-a>0.
k^2=b^2(x^2-a^2)/a^2(x-b)^2
=(b^2/a^2)[(x^2-a^2)/(x-b)^2]
=(b^2/a^2)[(x+a)/(x-b)][(x-a)/(x-b)]
=(b^2/a^2)[1+(b+a)/(x-b)][1+(b-a)/(x-b)]
因x>a,b^2/a^2>0,b+a>0,b-a>0,有:
k^2<(b^2/a^2)[1+(b+a)/(a-b)][1+(b-a)/(a-b)]
=0
这与k^2>=0矛盾,所以k的取值范围是空集.