如图,在Rt△ABC中,∠ACB=90度,AC=3,AB=5
将Rt△ABC以AB边所在的直线为轴旋转一周,你能求出所得几何体的侧面积吗?
人气:336 ℃ 时间:2020-03-29 06:38:17
解答
∵BC^2=AB^2-AC^2=5^2-3^2=25-9=16.
∴BC=4.
以AB为轴旋转一周所得的旋转体为同底的两个正圆锥体的组合体.
过C点作CD⊥AB于D点(垂足),则CD即为旋转体底面圆的半径R;
AC与BC分别为上下圆锥的母线L1和L2.
旋转体的侧面积S=上下圆锥体的侧面积之和:
S=πR(L1+L2)
式中,R=CD=AC*BC/AB (等面积关系),
∴R=3*4/5=12/5.
L1=AC=3,L2=BC=4.
∴S=π*12/5*(3+4)
=(84/5)π
∴S=16.8π≈52.75 (面积单位)---即为所求.
推荐
- 如图,在RT三角形ABC中,角ACB=90度,CD垂直AB于D,AC=3,AB=5,则AD等于……
- 如图,在RT△ABC中,∠ACB=90°,CD⊥AB于D,AC=3,AB=5,则AD等于
- 如图,Rt△ABC中,∠ACB=90°,AC=4,BA=5.P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离为y. (1)求y与x的函数关系式; (2)试讨论以P为圆心,半径长为x的圆与AB所在直线的位置关
- 已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F. (1)求证:GE=GF; (2)若BD=1,求DF的长.
- 如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于_.
- 甲,乙两数的平均数是94,乙,丙两数的平均数是87,丙,甲两数的平均数是86.问甲、乙、丙三数各是()()().
- 李明家离县城有15千米,汽车要两小时到达.平均行1千米要用几分之几时?
- 这样的山围绕着这样的水,这样的水倒映着这样的山,再加上空中云雾迷蒙,山间绿树红花,江上竹筏小舟,让你感觉到像是走进了连绵不断的画卷,真是“_________,_________”.
猜你喜欢