一道高数题求高人帮忙:已知级数∑(-1)^(n-1)*an=2,∑a2n-1=5,证明级数∑an收敛,并求此级数的和.
答案是这样给的:
因为∑(-1)^(n-1)*an=2,
所以∑(a2n-1-a2n)=2,且an→0
又因为∑a2n-1=5,
所以∑(a2n-1+a2n)=∑[2a2n-1-(a2n-1-a2n)]=8
设∑an的部分和为Sn,则
S2n=a1+a2+…+a2n-1+a2n
=(a1+a2)+...+(a2n-1+a2n)
是∑(a2n-1+a2n)的部分和
所以当n→+∞时,S2n=8
又因为S2n+1=S2n+a2n+1
所以当n→+∞时,S2n+1=8
所以当n→+∞时,Sn=8
所以∑an收敛且其和为8
但是,我看不懂这这道题答案的两个地方:
第一,感觉S2n=8和前面的一个定理有矛盾.
因为若级数∑a2n-1收敛,则当n→∞时,a2n=0
那S2n又等于8是为何?
第二,因为∑an可以看做是级数∑(a2n-1+a2n)去掉括号后的级数,而级数的基本性质5上说,当加括号后所得的新级数收敛时,则原级数未必收敛.
那为何答案在证出当n→+∞时,S2n=8=S2n+1时,为何后面直接得出了当n→+∞时,Sn=8的结论?
人气:155 ℃ 时间:2020-04-14 14:00:59
解答
你的定理一是错的,定理二是因为得证了奇数偶数项级数收敛于同一个极限才有的
推荐
猜你喜欢
- Update every 翻译成汉语
- 如图,在A岛周围25海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续前行20海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的
- 小学数学用字母表示数量关系,越多越好!
- 把下面几个词语连成句子,标上题号【连词成句】
- mother mom mommy 有什么区别.口气上的 还有grandmother grandma?
- three twenty-five的间接表达方式
- 为什么说实践的观点是辩证唯物主义认识论的首要基本观点?
- 已知A,B,C,D的平均数是3,且B+1,2,4,A-1的平均数是4,则B=