> 数学 >
已知△ABC的内角A,B,C成等差数列,则cos2A+cos2C的取值范围是 ___ .
人气:102 ℃ 时间:2020-03-29 19:15:11
解答
∵A,B,C成等差数列,
∴2B=A+C,又A+B+C=π,
∴B=60°,即A+C=120°,
cos2A+cos2C
=
1+cos2A
2
+
1+cos2c
2

=1+
cos2A+cos2C
2

=1+cos(A+C)cos(A-C)
=1-
1
2
cos(A-C),
∵-
1
2
≤cos(A-C)≤1,
1
2
≤1-
1
2
cos(A-C)≤
3
2

则cos2A+cos2C的取值范围是[
1
2
3
2
].
故答案为:[
1
2
3
2
]
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版