已知数列{an}满足a1=4,an=4-4/an-1(n>=2),设bn=1/an-2(1)求证{bn}是等差数列;(2)求数列的{an}的通项公式.
人气:283 ℃ 时间:2019-08-17 21:24:31
解答
(1)证明:an-2=2-4/a(n-1)=(2a(n-1)-4)/a(n-1)1/(an-2)=a(n-1)/(2a(n-1)-4)=1/2*a(n-1)/(a(n-1)-2)=1/2[1+2/(a(n-1)-2)]所以bn=1/2(1+2b(n-1))=b(n-1)+1/2即{bn}为等差数列,首项1/(a1-2)=1/2,公差为1/2(2)bn=n/2即1/...
推荐
- 已知数列an满足a1=4 an=4-4/an-1(n大于等于2) 求证bn是等差数列 求数列an的通项公式
- 知数列an满足a1=4 an=4-4/an-1(n大于等于2)令bn=1/[(an)-2]求证bn是等差数列 求数列an的通项公式
- 在数列{an}中,a1=1,an+1=1-1/(4an),bn=2/((2an)-1).求证数列{bn}是等差数列,并求an的通项公式
- 已知a1=1/4,an+bn=1,bn+1=bn/1-an^2,求证(1/bn-1)是等差数列,并求(an)的通项公式
- 数列{an}的通项为an=2n+1,则由bn=a1+a2+…+ann所确定的数列{bn}的前n项和是( ) A.n(n+2) B.12n(n+4) C.12n(n+5) D.12n(n+7)
- 怎样做好世界地理的等高线地图
- 钟面上的3:00,照在镜里是( ),钟面上的4:30,照在镜子里是( )钟面上的
- 海市蜃楼产生原理
猜你喜欢