在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.证△ADF∽△DEC
如果AB=4,AD=3根号3,AE=3,求AF的长
人气:220 ℃ 时间:2020-01-26 14:12:59
解答
∵ 四边形ABCD是平行四边形
∴ AD//EC
∠ADE=∠DEC ①
又∠AFE=∠B
∠AFD=180°-∠AFE
∠C=180°-∠B
∴ ∠AFD=∠C ②
又∴∠EDC=∠DAF ③
由① ② ③得
△ADF∽△DEC
由△ADF∽△DEC得
AF:DC=AD:DE ④
而 AE⊥BC
∴ △EAD为直角三角形
有勾股定律得
DE=√(3√3)^2+3^2=6
而 AB=DC=4,AD=3根号3
由 ④得
AF:4=3√3:6
AF=3√3*4/6=12√3/6=2√3
即 AF=2√3
推荐
- 在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.求 △ADF∽△DEC
- 在平行四边形ABCD中过点A作AE垂直BC垂足为E连接DE,F为DE上得一点,且角AFE等于角B 求证三角形ADF~三角...
- 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.若AB=4,AD=33,AE=3,则AF的长为_.
- 如图,在平行四边形ABCD中,E为BC边上的一点,连接AE,BD且AE=AB. 求证:∠ABE=∠EAD.
- 在平行四边形ABCD中,AE垂直BC于E,AF垂直CD于F,BD与AE和AF分别相交于G和H.求证⊿ABE∽⊿ADF
- 用函数观点看一元二次方程 1、 二次函数y= -x2+4x的值为2,求自变量x的值, 可以看作是解一元二次方程____
- 一个长方形,宽是6厘米,如果宽增加4厘米,面积就增加56厘米2,原来长方形的面积是多少?
- 英美法资产阶级革命的成果,并逐一说明其作用
猜你喜欢