已知平面向量OA,OB,OC满足:OA=OB=OC 向量OA⊥OB,向量OA=xOC+yOB,则x+y取值范围?
人气:172 ℃ 时间:2020-06-02 09:45:34
解答
因为OA=OB=OC,向量OA⊥OB
所以建立直角坐标系,设O(0,0),A(a,0),B(0,a),C(acosθ,asinθ)(a>0)
所以向量OA=(a,0),向量OB=(0,a),向量OC=(acosθ,asinθ)
因为向量OA=xOC+yOB
所以a=xacosθ ①
0=xasinθ+ya ②
由①知x=1/cosθ(cosθ≠0)
由②知y=-xsinθ=-tanθ
所以x+y=1/cosθ-tanθ=(1-sinθ)/cosθ=(1-sinθ)/[0-(-cosθ)]
即可以将它理解为点(0,1)和点(-cosθ,sinθ)之间直线的斜率
点(-cosθ,sinθ)在圆x²+y²=1上,画图可知斜率∈(-∞,0)∪(0,+∞)
因此x+y的取值范围为(-∞,0)∪(0,+∞)
推荐
- 已知向量A(cosa,1,sina),B(sina,1,cosa),则向量A+B与A-B的夹角是?
- ```一道高中关于向量的数学题
- 已知两点A(3,1)B(-1,3),若点C满足oc=(1-t)oa+tob,其中t属于R,o为原点,则点C的轨迹方程为?
- 一道高中关于向量的数学题
- 高中关于向量的一道数学题.
- 学校的操场是一个长80m,宽50m的长方形场地,在比例尺为1:2000的图上,长和宽分别应画多少厘米
- at the sight of those books,the children can't wait to read
- 一个圆柱与圆锥等底等高,为什么圆柱的体积就是圆锥体积的3倍
猜你喜欢