定义在R上的函数y=f(x),对任意x1,x2都有f(x1+x2)=f(x1)+f(x2),判断函数y=f(x)的奇偶性并证明.
人气:321 ℃ 时间:2020-04-03 07:06:46
解答
f(x)为奇函数
证明:∵定义在R上的函数y=f(x),对任意x1,x2都有f(x1+x2)=f(x1)+f(x2),
∴令x1=x2=0,有f(0+0)=f(0)+f(0).解得f(0)=0.
令x1=-x,x2=x,有f(-x+x)=f(-x)+f(x)=0,∴f(-x)=-f(x).
∴f(x)为奇函数.
推荐
- 定义域在R上的函数f(x)对实数x,y,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.判断并证明f(x)的奇偶性.
- 已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f(x1*x2)=f(x1)+f(x2).
- 已知函数f(x)的定义域为R,且对任意x,y属于R都有f(x+y)=f(x)+f(y),判断fx的奇偶性并证明
- 函数f(x)的定义域是R,对于任意实数x1,x2,都有f(x1+x2)=f(x1)+f(x2)
- 已知函数f(x)的定义域为x≠o的一切实数,对于定义域x1,x2都有f(X1·X2)=f(x1)+f(x2)
- clothes和clothing有什么区别?
- 6x-x∧2=5求步骤
- 是道C语言编程题,读入20个整数,统计非负数个数,并计算非负数之和
猜你喜欢