(1)
f'(x)=x²-2x+a,
在x=1+√2取极值,则
f'(1+√2)=1+a=0,
所以a=-1,
在此点附近的邻域里,x0,所以此点是极小值点.
(2)
f(x)=g(x),
(1/3)x³-x²-3x-b=0,
令h(x)=(1/3)x³-x²-3x-b,
则h'(x)=x²-2x-3=(x-3)(x+1),
在x=-1处是极大值,在x=3处是极小值,
所以如果想要满足题意,可以分3类讨论:
第一类:
h(3)0,
此时,无解;
第二类:
h(3)=0,h(-1)>0,h(-3)0,
解得-9