> 数学 >
若方程组a〉1x+b〉1y=c〉1 a〉2x+b〉2y=c〉2的解是x=3,y=4,求方程组3a〉1x+2b〉1y=5c〉1 3a〉2x+2b〉2y=5c〉2的解
注意:a1x的1为下标
人气:394 ℃ 时间:2019-10-19 20:08:47
解答
根据
a1 x + b1 y = c1
a2 x + b2 y = c2
的解为x=3,y=4,则有
3 a1 + 4 b1 = c1
3 a2 + 4 b2 = c2
那么
3 a1 x + 2 b1 y = 5 c1
3 a2 x + 2 b2 y = 5 c2
x=(5 b2 c1 - 5 b1 c2)/(3 a1 b2 - 3 a2 b1)
=[5 b2 (3 a1 + 4 b1) - 5 b1 (3 a2 + 4 b2)]/(3 a1 b2 - 3 a2 b1)
=(15 a1 b2 - 20 b1 b2 -15 a2 b1 - 20 b1 b2)/(3 a1 b2 - 3 a2 b1)
=5
y=(5 a2 c1 - 5 a1 c2)/(2 a2 b1 - 2 a1 b2)
=[5 a2 (3 a1 + 4 b1) - 5 a1 (3 a2 + 4 b2)]/(2 a2 b1 -2 a1 b2)
=(15 a1 a2 + 20 a2 b1 - 15 a1 a2 -20 a1 b2)/(2 a2 b1 -2 a1 b2)
=10
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版