设数列{an}和{bn}满足a1=b1=6,a2=b2=3,且数列{a(n+1)-an}是等差数列,数列{bn-2}是等比数列
1 求数列{an}和{bn}的通项公式
2 是否存在k属于正整数,使ak-bk属于(0,1/2)?若存在,求出k,若不存在,为什么?
人气:185 ℃ 时间:2019-08-20 10:50:55
解答
1.a2-a1=d=-3 a3-a2=-3 a4-a3=-3 ...an-a(n-1)=-3 叠加 an-a1=-3(n-1) 所以an=-3n+9 b2/b1=3/6=1/2 b3/b2=1/2 ...bn/b(n-1)=1/2 同理,叠乘:bn/b1=(1/2)∧(n-1) 所以 bn=6(1/2)∧(n-1) 2.不存在 ak-bk=-3n+9-6(1/2)...
推荐
- 在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)
- {an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
- 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3
- 已知数列{an}、{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且{an+1-an}(n∈Z)是等差数列,{bn-2}(n∈Z)是等比数列. (1)求数列{bn}的通项公式; (2)求数列{an}的通项公式; (3)是否存在k
- 数列an为等差数列,an为正整数,其前N项和为Sn,数列bn为等比数列,且a1=3,b1=1,
- 如图,在三角形ABC在中,BD是角ABC的平分线,CD是角ACE的平分线,试探索角D与角A的数量关系,并说明理由.
- 太平洋周围有那几个洲?大西洋边上呢?
- 1mol氧气有机NA氧原子
猜你喜欢
- 丰乐亭游春一得思想感情
- 汽水是怎样发明的?
- 决定蛋白质分子结构多样性的重要因素有哪些?
- Feel like可以加adj.
- 定义在(-1,1)上的奇函数f(X)是减函数,f(1-a)+f(1-3a)
- 与小朋友们在田野里游玩的作文,300字左右,是夏天,突出田野里的景色
- 美国莱特兄弟于1903年十二月七日,驾驶动力飞机成功的遨游蓝天,人们为什举行了盛大酒会.主持人邀请莱特兄弟发表演说,兄弟俩再三推辞,主持人执意邀请,哥哥便了意味深长的一句话:"据我所知,鸟中最会说话的是鹦鹉,而鹦鹉是永远飞不高的."
- 这句英语含宾语补足语吗