在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)
(1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论;
(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12
人气:402 ℃ 时间:2019-08-21 03:58:43
解答
(1)a1=2,b1=4
2*4=2+a2,则a2=6
6^2=4*b2,则b2=9
2*9=6+a3,则a3=12
12^2=9*b3,则b3=16
由a1=2=1*2,a2=6=2*3,a3=12=3*4 猜测
an=n(n+1)
由b1=4=2^2,b2=9=3^2,b3=16=4^2 猜测
bn=(n+1)^2
证明:a(n)+a(n+1)=n(n+1)+(n+1)(n+2)
=(n+1)(2n+2)=2(n+1)^2=2b(n=1)
b(n)*b(n+1)=(n+1)^2*(n+2)^2=[a(n+1)]^2
推荐
- 在数列{an},{bn}中,a1=2,b1=4,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列(n€n*)
- {an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
- 在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)
- 设数列{an}和{bn}满足a1=b1=6,a2=b2=3,且数列{a(n+1)-an}是等差数列,数列{bn-2}是等比数列
- 在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*) (1)求a2,a3,a4及b2,b3,b4; (2)猜想{an},{bn}的通项公式,并证明你的结论.
- bill,you have finished your homework ,Let's go to fly kites now.
- The Changjiang River is one of ___in the world
- (英语)询问和回答年龄的N种方式
猜你喜欢