在△ABC中,角A、B、C所对的对边长分别为a、b、c;
(Ⅰ)设向量
=(sinB,sinC),向量
=(cosB,cosC),向量
=(cosB,−cosC),若
∥(+),求tanB+tanC的值;
(Ⅱ)已知a
2-c
2=8b,且sinAcosC+3cosAsinC=0,求b.
(Ⅰ)∵向量x=(sinB,sinC),向量y=(cosB,cosC),∴x+y=(sinB+cosB,sinC+cosC),由z∥(x+y),得cosC(sinB+cosB)+cosB(sinC+cosC)=0,即sinBcosC+cosBsinC=-2cosBcosC所以tanB+tanC=sinBcosB+sinCcosC=sinBcos...