1.
∵sn=a1(1-q^n)/(1-q)=(a1-q×an)/(1-q)
∴189=(3-96q)/(1-q)
∴q=2
∵96=3×2^(n-1)
∴n=6
2.
∵s2=a1(1-q²)/(1-q)=7
s4=a1(1-q^4)/(1-q)=a1(1+q²)(1-q²)/(1-q)
s6=a1(1-q6)/(1-q)=a1(1-q²)(1+q²+q^4)/(1-q)=91
∴s6÷s2=1+q²+q^4=13
∴q²=3
∵s4÷s2=1+q²=4
∴s4=4s2=28
3.
∵an=2^n-1
∴a1+a2+……+an=(2-1)+(2²-1)+……+(2^n-1)
=(2+2²+……+2^n)-n
=2^(n+1)-2-n
4.
做法类似于2,详细过程我就不写出来了.
∵s2n÷sn=1+q^n=5
∴q^n=4
∵s3n÷sn=1+q^n+q^2n=21
∴s3n=21sn=42
