> 数学 >
已知定义在实数集R上的函数f(x)满足:(1)f(-x)=f(x)(2)f(2+x)=f(2-x)(3)当x∈[0,2]时解析式y=2x-1,求x∈[-4,0]上的解析式
人气:242 ℃ 时间:2020-01-04 02:05:58
解答
因为f(-x)=f(x)
所以函数f(x)是偶函数,其图像关于y轴对称
又f(2+x)=f(2-x)
所以f(4+x)=f(-x)=f(x)
所以函数f(x)是以4为最小正周期的周期函数
因为当x∈[0,2]时解析式y=2x-1
所以根据图像可知当x∈[-4,-2]时也是一次函数可设为y=ax+b,且当x=-4时y=-1
当x=-2时y=3
解得a=2,b=7 即当x∈[-4,-2]时y=2x+7
当x∈[-2,0]时也是一次函数可设为y=ax+b
且当x=-2时y=3 当x=0时y=-1
解得a=-2,b=-1 即当x∈[-2,0]时y=-2x-1
综上所述:当x∈[-4,-2]时y=2x+7
当x∈[-2,0]时y=-2x-1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版