已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
人气:347 ℃ 时间:2019-09-17 04:32:45
解答
由抛物线的定义可得:|AF|+|BF|=x1+p2+x2+p2=x1+x2+p=8∴x1+x2=8-p.∵点Q(6,0)在线段AB的垂直平分线上,∴|QA|=|QB|即:(x1-6)2+y12=(x2-6)2+y22,又∵y12=2px1,y22=2px2,∴(x1-6)2+2px1=(x2-6)2+2...
推荐
- 已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
- 已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
- 已知抛物线的顶点在原点,焦点F在x轴正半轴上,且过点P(2,2),
- 已知抛物线C的顶点在原点,焦点F在X轴的正半轴上,若抛物线上一动点P到A(2,3/2)、F两点距离之和的最小值为4.
- 已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
- 中心小学六年级的三个班向贫困地区捐款的情况是:甲班440元,是乙班的22/25,丙班比乙班多1/10,问丙班捐款
- Twenty plus three is twenty一three.
- 麻雀的特征
猜你喜欢