|
由条件知
1 |
x1 |
1 |
x2 |
x1+x2 |
x1•x2 |
即
−3 |
a |
9 |
4 |
则方程(k-1)x2+3x-2a=0②为(k-1)x2+3x+2=0
当k-1=0即k=1时,
k2−1 |
k2+k−6 |
当k-1≠0时,△=9-8(k-1)=17-8k≥0,∴k≤
17 |
8 |
又∵k是正数,且k-1≠0,∴k=2,但使
k2−1 |
k2+k−6 |
综上,代数式
k2−1 |
k2+k−6 |
k2−1 |
k2+k−6 |
|
1 |
x1 |
1 |
x2 |
x1+x2 |
x1•x2 |
−3 |
a |
9 |
4 |
k2−1 |
k2+k−6 |
17 |
8 |
k2−1 |
k2+k−6 |
k2−1 |
k2+k−6 |