证明多项式f(x)=1-(x-1)(x-2)(x-3)……(x-n)在有理数域上不可约
人气:486 ℃ 时间:2019-08-19 09:34:17
解答
方便起见,不妨改为证明f(x) = (x-1)(x-2)(x-3)...(x-n)-1不可约.用反证法,假设f(x) = g(x)h(x),其中g(x),h(x)都是次数不小于1的有理系数多项式.由Gauss引理,不妨设g(x)与h(x)都是首1的整系数多项式.依次带入x = 1,2,...
推荐
- 证明多项式f(x)=x^3+3x+1在有理数域上不可约
- a=根号2加根号3,证明,存在有理数域上的不可约多项式f(x),使f(a)=0
- f(x),g(x)是有理数域上的多项式,且f(x)在有理数域上不可约,
- 证明有理数域Q上一元多项式环Q【x】的理想(2,x)是主理想
- f(x)=x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1在有理数域、实数域上的不可约多项式乘积
- 已知13X^2-6XY+Y^2-4X+1=0,求(XY-X^2)^5的值.
- 两规格分别为“220V 40W”“220V 100W”的电热器串联后使用,那么,允许加在它们两端的最大电压不得超过多少V?
- 英语翻译
猜你喜欢
- 一批货,大车要运16辆,小车要运48辆才能运完.大车比小车每车多运4吨.请问这批货有多少?
- 《蒙娜丽莎之约》练习题
- “重温老师给你留下的难忘回忆,写信给老师”的作文怎么写
- 依法纳税是每个公民应尽的义务,小芳的妈妈上个月的工资总额是2000元,按照个人所得税法规定,超过2000元
- 齐次方程组x1+x2=0,x2-x4=0,基础解系为k1(0,0,1,0)^T+k2(-1,1,0,1)^T,问第一个解向量 是怎么得来的
- 大地怎么造句
- 为什么一般情况下,弱电解质浓度越大,电离度小?特殊情况是指?
- 类似于日日行,不怕千万里;常常做,不怕千万事的名句?