> 数学 >
如图,在三角形ABC中,AB=AC,角BAC=90,点D在边BC上,求证:BD^2+CD^2=2AD^2
人气:193 ℃ 时间:2019-08-19 08:23:58
解答
司大黄,
证明:过A点作AE⊥BC于E
则在RtΔADE中,AD^2=DE^2+AE^2
又∵ΔABC为等腰RtΔ
∴AE=BE=CE
又BD^2+CD^2=(BE-DE)^2+(CE+DE)^2
=BE^2+CE^2+2DE^2
=2AE^2+2DE^2
=2AD^2
即BD^2+CD^2=2AD^2
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版