> 数学 >
是否存在常数c,使得不等式x/(2x+y)+y/(x+2y)≤c≤x/(x+2y)+y/(2x+y)对任意正数x,y恒成立
[x/(2x+y) +y/(x+2y)]-[x/(x+2y) +y/(2x+y)]
=[x(x+2y)+y(2x+y)-x(2x+y)-y(x+2y)]/[(x+2y)(2x+y)]
=[x^2+2xy+2xy+y^2-2x^2-xy-xy-2y^2]/[(x+2y)(2x+y)]
=(2xy-x^2-y^2)/[(x+2y)(2x+y)]
=-(x-y)^2/[(x+2y)(2x+y)]≤0{对任意正数x,y}
----------------------------------------------------------------
其中,x=y时,等号成立
x=y时,x/(2x+y) +y/(x+2y)=x/3x+y/3y=1/3+1/3=2/3
所以,c=2/3时,
不等式x/(2x+y) +y/(x+2y)
人气:251 ℃ 时间:2019-08-21 17:58:37
解答
设2x+y=3m,2y+x=3n 且m,n均为正数则x=2m-n,y=2n-m所以x/(2x+y)+y/(x+2y)=(2m-n)/3m+(2n-m)/3n=4/3-1/3(n/m+m/n)≤4/3-1/3*2=2/3x/(x+2y)+y/(2x+y)=(2m-n)/3n+(2n-m)/3m=2/3(n/m+m/n)-2/3≥2/3*2-2/3=2/3所以c=2/3...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版