已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/|AC
求P点轨迹过三角形的垂心
人气:245 ℃ 时间:2020-02-04 01:48:18
解答
OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP•BC=入{(AB•BC /|AB|^2*sin2B)+AC•BC /...
推荐
- 已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/|AC
- 若O为△ABC所在平面内的一点,动点P满足向量OP=向量OA+入(向量AB+向量AC),……
- 设O为三角形ABC所在平面上一定点,P为平面上的动点,且满足(向量OP-向量OA)*(向量AB-向量AC)=0
- 已知O是三角形ABC所在平面内的一定点,动点P满足向量:OP=OA+入{(AB/|AB|sinB)+AC/|AC|+sinC)}入属于(0,正无穷),则动点P的轨迹一定通过三角形ABC的:__心.
- 三角形ABC所在平面内点O、P ,满足向量OP=向量OA+入(向量AB+向量AC),则P的轨迹一定经过三角形ABC的 心
- O2+NH3+ALCL3反应吗?生成什么!
- 某班化学实验兴趣小组准备在化学老师的带领下对电解水实验进验证老师提供的药品和器材如下
- 一个成语,用来形容坚强独立的人能在动荡艰难的环境中起支柱作用?
猜你喜欢