求在区间[0,π/2]上曲线y=sinx与直线x=π/2,y=0所围成的图形绕y轴旋转产生的旋转体的体积
人气:161 ℃ 时间:2019-08-19 17:08:37
解答
所求旋转体的体积可看成是由直线x=π/2,y=1,x轴与y轴共同围成的图形绕y轴旋转产生的旋转体体积V1与由直线y=0,曲线y=sinx与y轴所围成的图形绕y轴旋转产生的旋转体体积V2这两者的差值
V1明显是一个圆柱体的体积,其底面半径为π/2,高为1,所以V1=π*(π/2)^*1=(π^3)/4
V2的体积可以通过列出下列积分求出:
V2=∫π*x^(y)dy,y的积分下限为0,上限为1,其中x(y)为y=sinx的反函数,即x=arcsiny,于是有V2=π*∫(arcsiny)^dy
上式可转化为对x的积分:
V2=π*∫x^d(sinx)(x下限可求出为0,上限为π/2)
对其进行分部积分:(以下凡是关于x的积分都是下限为0,上限为π/2)
V2=π*x^*sinx|(x=π/2)-n*x^*sinx|(x=0)-π*∫sinx d(x^)
=(π^3)/4 + 2π*∫xd(cosx)
=(π^3)/4 + 2π*xcosx|(x=π/2)-2π*xcosx|(x=0)-2π*∫cosxdx
=(π^3)/4 -2π*sinx|(x=π/2)+2π*sinx|(x=0)
=(π^3)/4-2π
于是所求V=V1-V2=2π
推荐
- 求曲线y=sinx,x=π/2,y=0所围图形绕y轴所得的旋转体体积
- 求曲线y=sinx,x=π/2,y=0所围图形绕x轴所得的旋转体体积?
- 求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕y轴旋转一周所得的旋转体的体积
- 求曲线y=sinx从x=0到x=pi一段和x轴围成的图形绕x轴旋转所形成的旋转体的体积
- 求由曲线y=sinx,y=cosx,x=0,x=pai/2所围成图形绕x轴旋转一周而成的旋转体的体积.
- 1.8x+5y=10 8x-5y=10 2.3x+2y=9 4x-2y=5 3.2x+3y=5 6x-2y=-6 4.3x+2y=29 4x-5y=19 ,
- 分解因式:(xy+1)-(x+y)=
- 已知地球距离月球表面约383900千米,那么这个距离用科学计数法表示为(精确到千位)
猜你喜欢
- 我不知道该如何和我的同学和睦相处 翻译为英语
- 小明家在3楼,要走18级台阶,6楼要走多少级?
- 在哪里能够搜索到人教版的三年级语文上册第22课《富饶的西沙群岛》课文?
- 什么情况下偏导数存在?
- 20世纪七八十年代,中国和苏联先后进行了改革,然而,中、苏的改革却导致了不同的结果.
- 一次足球循环赛中,红队以3:2胜蓝队,蓝队以1:0胜黄队,黄队以2:0胜红对,计算各队的净胜球数(提示:每个
- Do you know __ they will visit in Beijing tomorrow?A.what B.where
- 在某湖一周按30米的间隔种树与按25米的间隔种树,总数相差36棵.