> 数学 >
数列【an】满足(n+1)an+1=2(n+2)an+3n2+9n+6,a1=6,求通项公式
人气:394 ℃ 时间:2020-06-30 11:33:37
解答
(n+1)a(n+1)=2(n+2)an+3n²+9n+6(n+1)a(n+1)=2(n+2)an+3(n+1)(n+2)等式两边同除以(n+1)(n+2)a(n+1)/(n+2)=2an/(n+1) +3a(n+1)/(n+2) +3=2an/(n+1)+6=2[an/(n+1)+3][a(n+1)/(n+2) +3]/[an/(n+1)+3]=2,为定值a1/(1...接上面的第二问bn=3(n+1)/an,{bn}的前n项和Tn<5/3
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版