已知y=y(X)是参数方程x=∫t/0arcsinu du,y=∫t/0te^u du,所确定的函数,求lim dy t-0 dx
人气:486 ℃ 时间:2019-08-20 23:32:33
解答
dy/dx
=(dy/dt)/(dx/dt)
=(te^t)/(arcsint).
当t趋近于0的时候,求极限符合罗必塔法则,则有:
limdy/dx
=lim (e^t+te^t)/[1/√(1-t^2)]
=e^0
=1.
推荐
- 求极限lim(t->0+) 1/t^2 ∫(0~t)dx∫(0~t-x)e^(x^2+y^2)dy,高手帮个忙,
- 设函数y=y(x)由参数方程x=cos t,y=sin t - t cos t确定,求dy/dx
- f(x)在[0,+∞)内连续,且lim(x→+∞)f(x)=1.证明函数y=e^(-x)∫(0,x)e^tf(t)dt满足方程dy/dx+y=f(x)
- 参数方程x=(t-1)e^t,y=1-t^4,求dy/dx
- 求参数方程所确定的函数y=f(x)的导数dy/dx
- 翻译下 Tracy want to give birth to a mixed blood child
- 甲乙两人出同样的多钱去买笔记本,结果甲拿了10本,乙拿了6本,所以甲又给了乙2元钱,问每本笔记本是几元
- 买3千克梨用4元5角钱,1千克苹果的价钱比1千克的价钱便宜3角钱,买3千克苹果要用多少钱?(用两种方法解答)
猜你喜欢