∵△=0,方程有两个相等的实数根.
∴AB=CD,此时AB∥CD,则该四边形是平行四边形;
当m>2时,△=m-2>0,
又∵AB+CD=2m>0,
AB•CD=(m-
1 |
2 |
7 |
4 |
∴AB≠CD.
该四边形是梯形.
(2)根据三角形的中位线定理可以证明:连接梯形的两条对角线的中点的线段等于梯形的上下底的差的一半.
则根据PQ=1,得CD-AB=2.
根据(1)中的AB+CD和AB•CD的式子得(2m)2-4(m2-m+2)=4,
∴m=3.
当m=3时,则有x2-6x+8=0,
∴x=2或x=4,
即AB=2,CD=4.
(3)根据该梯形是等腰梯形,平移一腰,则得到等边△BEC.
∴∠BCD=60°,∠BDC=30°.
∵tan∠BDC+tan∠BCD=
4 |
3 |
3 |
tan∠BDC•tan∠BCD=1.
∴所求作的方程是y2-
4 |
3 |
3 |