(1)过P作PH∥CD,
∴∠HPC=∠C,
∵AB∥CD,
∴AB∥PH,
∴∠A=∠APH=25°,
∴∠HPC=∠APC-∠APH=70°-25°=45°;
∴∠C=45°∠;
(2)∠APC=∠A+∠C;理由如下:
过P作PH∥CD,
∴∠HPC=∠C,
∵AB∥CD,
∴AB∥PH,
∴∠A=∠APH,
∴∠APC=∠HPC+∠APH=∠A+∠C;
(3)∠APC=∠C-∠A;
(4)∠APC=∠A-∠C.
故答案为45°;∠APC=∠A+∠C;∠APC=∠C-∠A;∠APC=∠A-∠C.