x | 1 |
则f(x1)−f(x2)=(1−
1 |
x1 |
1 |
x2 |
1 |
x2 |
1 | ||
|
x1−x2 |
x1x2 |
∵0<x1<x2,
∴x1-x2<0,x1x2>0.
∴
x1−x2 |
x1x2 |
即f(x1)-f(x2)<0.
∴f(x1)<f(x2).
∴函数f(x)在(0,+∞)上单调递增.
(2)(ⅰ)当x>0时,令f(x)=0,
即1−
1 |
x |
解得x=1>0.
∴x=1是函数f(x)的一个零点.
(ⅱ)当x≤0时,令f(x)=0,即(a-1)x+1=0.(※)
①当a>1时,由(※)得x=
1 |
1−a |
∴x=
1 |
1−a |
②当a=1时,方程(※)无解;
③当a<1时,由(※)得x=
1 |
1−a |
综上,当a>1时,函数f(x)的零点是1和
1 |
1−a |
当a≤1时,函数f(x)的零点是1.